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Abstract: The design of thin-walled composite blades is optimized in order to provide high dynamic 
performance. The optimal design is originated with respect to maximum natural frequency criterion. The 
optimization model employs the concept of spanwise material grading along the blade axis. Spanwise 
material grading is achieved by changing the distribution of fiber volume fraction along the blade length. 
The main blade spar is represented by a beam composed of multiple uniform segments each of which has 
different cross-sectional properties and length. Transfer matrix technique is used to study the dynamic 
behavior of such a beam. Design variables are chosen to be the cross-section dimensions, length, fiber 
orientation angle and fiber volume fraction of each segment. The optimization problem is formulated 
analytically as non-linear constrained problem solved by sequential quadratic programming technique. 
Finite element modeling using NX Nastran solver is performed in order to validate the analytical results. 
The results show that the approach used in this study enhances the dynamic characteristics of the optimized 
blades as compared with a baseline design. 
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INTRODUCTION 
 
 Thin-walled composite beams with a variety of 
cross sections are used extensively in the design of 
many aerodynamic structures. Applications such as 
wind turbines, aircraft propellers and helicopter rotor 
blades  mainly  built  up  of  thin-walled  composite 
beams [1, 2]. To design these components, the dynamic 
characteristic, especially near resonant conditions, need 
to be well examined to assure a safe operation. Among 
the dynamic characteristics of these structures, 
determination of the natural frequencies and the 
associated mode shapes are of fundamental importance. 
The objective of this investigation is to optimize the 
structural dynamics of a thin-walled composite blade 
through the reduction of the overall vibration level. The 
latter can be attained directly by maximizing the natural 
frequencies of the main blade structure under strength 
and mass constraints. In general conditions however we 
need a material that is as light as possible for a 
specified stiffness in order to satisfy the design criteria 
and to minimize the weight induced fatigue loads. 
Composite materials offer huge advantages in terms of 
strength-to-weight ratios [3]. The main advantages of 
fiber composite materials are their high strength and 
stiffness combined with low density, their superior 

fatigue properties due to the prevention of crack 
propagation and the ability to tailor the layup for 
optimum strength and stiffness. However, sharp 
transitions between component materials may cause 
stress and strain discontinuities that facilitate failure [4]. 
A solution that can be promising to enhance dynamic 
stability of composite blades is the use of functionally 
graded materials (FGMs), in which the mechanical and 
physical properties vary spatially within the structure 
[5]. A functionally graded material is a material in 
which the composition and/or the structure gradually 
change resulting in a corresponding change in its 
properties [6].  
 Analytical model for the free vibration of 
anisotropic thin-walled closed-section uniform beams 
was developed by Armanios and Badir [7] using a 
variational asymptotic approach and Hamilton's 
principles. This model is applied to uniform thin-walled 
beams with arbitrary closed cross sections made of 
laminated fiber composite materials with variable 
thickness and stiffness. The analysis was applied to two 
kinds of laminated composites: Circumferentially 
Uniform Stiffness (CUS) and Circumferentially 
Asymmetric Stiffness (CAS). The model developed by 
Armanios and Badir was used by Dancila and Armanios 
[8]  to  study  the  influence  of   coupling   on   the  free 
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vibration of thin-walled composite beams. The model 
was also used by Durmaz and Kaya [9] to study the free 
vibration of thin-walled box beams in the case of 
bending-torsion coupling. The static and dynamic 
characteristics of composite thin-walled beams that are 
constructed from a single cell were considered by 
Shadmehri et al. [10]. The structural model considered 
incorporated a number of non-classical effects, such as 
material anisotropy, transverse shear, warping 
inhibition, non-uniform torsion and rotary inertia. The 
governing equations were derived using extended 
Hamilton's principle and solved using extended 
Galerkin's method. Phuong and Lee [11] presented a 
flexural�torsional analysis of thin-walled composite 
box beams. A general analytical model applicable to 
thin-walled composite box beams subjected to vertical 
and torsional loads was developed. Piovan et al. [12] 
developed analytical solutions for the free vibration 
analysis of tapered thin-walled laminated-composite 
beams with closed cross-sections. The exact values of 
frequencies were obtained by means of power series 
schemes. A parametric analysis was performed for 
different taper ratios, stacking sequences and materials. 
Kargarnovin and Hashemi [13] investigated the free 
vibration of a fiber composite cylinder, in which 
volume fraction of fibers vary longitudinally, using a 
semi-analytical method. The distribution of volume 
fraction of fiber in base matrix was based on power law 
model. Liu and Shu [14] developed an analytical 
solution to study the free vibration of exponential 
functionally graded beams with a single delamination. 
They showed that the natural frequencies increase as 
Young�s modulus ratio becomes bigger. 
 In the present study, an analytical model is 
developed to study the dynamic behavior of tapered 
thin-walled composite blades using transfer matrix 
technique. Furthermore, the main blade structure is 
optimized using material grading concept in order to 
maximize its natural frequencies without mass penalty.  
 

Kinematic variables and constitutive equations: 
Considering a closed-section composite shell illustrated 
in Fig. 1. The length of the shell is denoted by L, its 
thickness by h, the radius of curvature of the middle 
surface by R and the maximum cross section dimension 
by d such that: 
 

d<<L 
                                         h<<d (1) 

h<<R 
 

 Following the methodology given by Armanios 
and Badi [7], the constitutive relationships can be 
written in terms of stress resultants and kinematic 
variables as follows: 

 

 
 
Fig. 1: Closed-section shell with arbitrary shape [7] 
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where, T is the traction force, Mx is the torsional 
moment, My and Mz are flexural moments about y and z 
axes respectively and Cij the cross sectional stiffness 
coefficients. Four global kinematic variables are 
defined at a cross sectional level: U1, U2 and U3 are the 
average cross sectional displacements in x, y and z 
directions respectively and  is the cross sectional twist 
function about x-axis. The prime superscripts indicate 
differentiations with respect to x. 
 
General equations of motion: The equations of 
motion for the case of undamped free vibration are 
obtained using Hamilton�s principle [7], as follows: 
 

0121431312111  UmUCUCCUC c
  

02322432322112  USUSIUCUCCUC yz
  

0323433323113  UmSUCUCCUC cz
  

0224433424114  UmSUCUCCUC cy
   (3) 

where, mc is the mass per unit length of the beam, I is 
the polar moment of inertia per unit length, Sz and Sy 
are the first moment of inertia per unit length about z 
and y axes respectively. The dot superscripts denote 
differentiation with respect to time. Detailed derivations 
for calculating the cross sectional stiffness coefficients 
are given by Armanios and Badir [7]. The reduced 
axial, coupled axial-shear and shear stiffness 
coefficients of a thin-walled composite laminate are, 
respectively, given by: 
 



World Appl. Sci. J., 33 (3): 525-535, 2015 

527 

 

]/)([4

]/[2

/)(

22
2

2666

22261216

22
2

1211

AAAC

AAAAB

AAAA







                             (4) 

 
where, Aij are the membrane in-plane stiffnesses given 
by Berthelot [3]: 
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where, zk and zk-1 are the upper and lower coordinate of 
the kth ply within the laminate. 

ijkQ  are the elements of 

the kth lamina stiffness matrix referred to the reference 
axes (x, y, z) and they are given by Reddy [15]: 
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where, 
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where,  is the fiber orientation angle within each 
lamina with respect to the x-axis. Qij are the elements of 
the stiffness matrix of the reduced form of Hooke's law 
for an orthotropic homogeneous lamina in a plane stress 
state and they are given by Daneil and Ishai [2]: 
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where, E11 and E22 are the Young�s moduli in the 
longitudinal and lateral directions of the lamina, G12 is 
the shear modulus and v12 is the major Poisson�s ratio. 

Based upon the semi-empirical methods by Halpin and 
Tsai [16], they are given by: 
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 Subscripts �m� and �f� refer to properties of matrix 

and fiber materials respectively. V is the volume 
fraction of fibers within each lamina. 
 
Particular case studies: Two particular cases of fiber 
layup are considered in which some of stiffness 
coefficients vanish: circumferentially uniform stiffness 
(CUS) and Circumferentially Asymmetric Stiffness 
(CAS) [17]. The cross section of the beam under 
consideration is selected to be rectangular for its wide 
applications in aerodynamic structures. Figure 2 shows 
a rectangular box beam with both CUS and CAS layup 
configurations. For a CUS layup configuration, the 
stiffness coefficients A, B and C are constant 
throughout the cross section. While, for a CAS layup 
configuration, the axial stiffness A is constant 
throughout the cross section, while the coupled axial-
shear stiffness B in the top and bottom members are of 
opposite sign and the shear stiffness C along the 
horizontal and vertical members are different (Chorizontal 
= 0.5Cvertical). For a rectangular box beam with wall 
thickness t, width w and height h, the governing 
equations are reduced to: 
 
CUS-layup Configuration 
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Fig. 2: (a) CUS and (b) CAS layup configurations [17] 
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Fig. 3: Modeling of a tapered spar 
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 The first two equations of motion are expressing an 
extension-twist (ET) coupling mode of vibration, while 
the third and fourth equations of motion are expressing 
vertical bending (VB) and horizontal bending (HB) 
modes of vibration, respectively. 
 
CAS layup configuration: 
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 The second and third equations of motion are 
expressing a coupled vertical bending-twist (BT) mode 
of vibration, while the first and fourth equations of 
motion are expressing extension (E) and horizontal 
bending (HB) modes of vibration, respectively. 
 
Dynamics of a tapered blade spar: Tapered spar can 
be considered as a beam built up of multiple segments 
with decreasing cross sectional area as shown in Fig. 3. 
In order to study the vibratory behavior of such a beam, 
transfer matrix technique is used [18]. Transfer matrix 
is a square matrix that relates the state vector at one end 
of the kth segment Zk to the state vector at the other end 
of that segment Zk+1. When considering the flapping 
motion of the blade, the state vector at the ends of the 
kth segment can be expressed as: 
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where, z is the vertical displacement, y is the bending 
slope, My is the bending moment and Fz is the shear 
force. For a spar beam built up of N-uniform segments: 
 
                                11 ZTZ oN 

 (15) 

 
 The matrix [T]o is called the overall transfer matrix 
formed by taking the products of all the intermediate 
elementary transfer matrices in the order:  
 
              121 TTTTTT kNNO   (16) 

 
 Therefore, applying the boundary conditions at 
both ends of the beam and considering only the 
nontrivial   solutions,   the   frequency equation can be 
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obtained. As a basic case study, the vertical flapping 
motion of a beam with CUS layup configuration is 
considered here. The equation of motion reduces to: 
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 Its general solution can be expressed as Meirovitch 
[19]: 
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 The terms of the elementary transfer matrix [T]k 
(Eq. 16) are given by: 
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 Imposing the cantilevered boundary conditions to 
the overall beam: 
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The frequency equation takes the form: 
 

           0)3,4()4,3()4,4()3,3(  oooo TTTT  (21) 
 

Optimization model formulation: Design Variables: 
In order to optimize the design of a blade spar with 
thin-walled rectangular cross section, many geometrical 
and material variables should be taken into 
consideration. Geometrical variables are including the 
spar length (L), width (w), height (h) and wall thickness 
(t). In this investigation, the aspect ratio of the spar 
cross section (h/w) is held constant. Composite material 
variables are including type of constituent materials 
(fiber and resin), number of laminate layers (nr), fiber 
volume fraction (Vf), fiber orientation angle () and 
thickness (d) of each lamina.  

 
Objective function: The objective function is 
measured by maximizing a weighted sum of successive 
natural frequencies: 
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
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n

i
iiwXf
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)(   (22) 

 
where, wi is the weighting factor of the ith natural 
frequency  (i).  A  reliable  way  of  adjusting  the 
values  of  the  weighting  factors can be based on the 
fact that each frequency is to be maximized from its 
initial value corresponding to the uniform reference 
baseline design.  
 
Design constraints: 
Constraints imposed on wall thickness of each 
segment composing the spar beam: 
 

                                  UkL ttt ���   (23) 

 
where, 

Lt�  and 
Ut�  are lower and upper limits of the non-

dimensional wall thicknesses of each segment of the 
spar (

okk ttt /�  ).  

 
Cross-section dimensions of the blade spar: For the 
kth segment of the blade spar, its height must be less 
than or equal to the maximum height of the tapered 
beam corresponding to the segment position. Figure 4 
shows the general dimensions of a tapered beam, where 
"r" and "t" subscripts represent the root and tip 
locations along the beam. 
 Maximum height "hmax" of any segment within the 
beam at location "x" is given by: 
 
                 otrt Lhhxhh /)(max   (24) 

 
 Typical values of hr, ht and Lo considered in this 
investigation are 250, 50 and 7500 mm, respectively. 
Lower bounds are also imposed on the height of the kth 
segment of the beam as a reasonable percentage of the 
minimum height near the beam tip. Thus, the inequality 
constraints imposed on the height of each segment of 
the beam are expressed by: 
 
                          maxmin hhh k   (25) 

 
Constraints imposed on the fiber volume fraction: 
Fiber volume fraction must be higher than a specific 
value to insure structural strength and lower than a 
maximum realistic value from the point view of 
manufacturing. 
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Fig. 4: General dimensions of a tapered spar 
 

 
 
Fig. 5: Effect of fiber angle on horizontal and vertical bending natural frequencies of a single segment cantilevered 

box beam 
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Length of the beam: Since the total length of the 
optimized beam is equal to that of the reference 
baseline beam, the following equality constraint must 
be always satisfied: 
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Mass constraint: In order not to violate economic 
feasibility and other performance requirements of a 
composite blade, an inequality constraint is imposed on 
the non-dimensional structural mass of the blade spar: 
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Optimization technique: Sequential Quadratic 
Programming   (SQP)   is   one   of   the   most  recently 

developed and perhaps one of the best methods of 
optimization [20]. The method has a theoretical basis 
that is related to the solution of a set of nonlinear 
equations using Newton�s method and the derivation of 
simultaneous nonlinear equations using Karush�Kuhn�

Tucker (KKT) conditions to the Lagrangian of the 
constrained optimization problem. The simplest 
optimization problems are those with quadratic 
objective function [21]. The essential idea of SQP is to 
model the optimization problem at the current iterate xk 
by a quadratic programming subproblem and to use the 
minimizer of this subproblem to define a new iterate 
xk+1 [22]. The solution of most practical optimization 
problems requires the use of computers. Several 
commercial software systems are available to solve 
optimization problems that arise in different 
engineering areas. MATLAB is popular software that is 
used for the solution of a variety of scientific and 
engineering problems. MATLAB optimization toolbox 
contains a library of programs or m-files, which can be 
used for the solution of optimization problems.    The  
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Table 1: Properties of constituent materials [1] 

Property Epoxy E-glass 

Modulus of elasticity E (GPa) 4.5 74.00 

Modulus of rigidity G (GPa) 1.6 30.00 

Poisson�s ratio 0.4 0.25 

Density (kg/m3) 1200.0 2600.00 

 

Table 2: Natural frequencies of the cantilevered baseline beam 

 Natural frequencies (Hz) 

 ----------------------------------------------- 

Vibration mode 1st mode 2nd mode 3rd mode 

Vertical Bending (VB) 2.80 17.55 49.14 

Horizontal Bending (HB) 4.86 30.50 85.35 
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Fig. 6: Spanwise material grading of twenty-segment 

spar 
 
function fmincon is applied to most smooth objective 
functions with smooth constraints. It is the most 
suitable function to the optimization problem of this 
investigation. 
 
Baseline design: Definition of a baseline design is 
intended in order to simplify and clarify the effects of 
changing variables on the objective natural frequencies 
of  different  modes  of  vibrations.  Baseline design is a 

 
composite box beam with specific variables to which 
every design variable under investigation is compared. 
Normalization of design variables is done by dividing 
each variable by the corresponding one of the baseline 
design. Thus, actual value of any design variable or 
natural frequency can be obtained by multiplying the 
normalized value by that of the baseline design. Figure 
5 shows the effect of fiber orientation angle on the 
bending natural frequencies of a uniform (single 
segment) box beam. The dimensions of that beam are 
40 mm width, 25 mm height, 0.9 mm thickness and 800 
mm length. The beam material is unidirectional 
laminate of 70 vol. % E-glass fiber/epoxy composite 
with properties given in Table 1 [1]. It is noticed that 
axially oriented fibers give the maximum bending 
natural  frequencies. These results are in agreement 
with those obtained by Armanios and Badir [7]. 
Baseline  beam  is  thus  selected to be uniform box 
beam with unidirectional laminate of E-glass 
fiber/epoxy  with  fiber  orientation angle (=0) and 
fiber volume fraction of (Vf =0.5). This fiber layup 
configuration  gives  maximum  natural  frequencies  
for  bending  modes  of  vibration (Fig. 5), while 
maintain moderate structural mass and strength. 
Dimensions of baseline beam are selected to be 
appropriate for a typical application such as wind 
turbine blades. Length of baseline beam is selected to 
be   (Lo = 7.5 m),  height  is  (ho=150 mm),  width  is 
(wo =300 mm) and wall thickness is (to=10 mm). Mass 
of the baseline beam is (mo=122.55 kg). Natural 
frequencies of the cantilevered baseline beam under 
consideration are given in Table 2. 
 
Optimum design solutions: For a multiple-segment 
spar, with each segment built up of single laminate 
walls, several cases were studied by increasing the 
number of segments in each case until reaching 
convergent values of natural frequencies at a number of 
20 segments. As the number of segments increases the 
total run time of the computer program increases. The 
non-dimensional optimum design solution for the spar 
with 20 segments is given by: 

 

        [Xopt] = 












50539305963067570793709550014391324814730158731

80808080808080808080

0000000000

95940024810914116071232513060138011454215270159791

04900050000520005380055100556005560054600531005160
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

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





5.05.05.05.05.05.05.05.05.05.0

2.03009.03144.03208.03304.04883.06253.07739.08.08.0

0000000000

1.01490.02326.03519.05065.05793.06560.07396.08166.08909.0

0355.00234.00307.00403.00546.00575.00597.00608.00557.00514.0
  (29) 
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Table 3: Actual dimensions (mm) and natural frequencies of the optimum spar 

Seg. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

L 387 398 410 417 417 413 404 390 374 368 386 417 456 448 432 409 302 230 176 266 

h 240 229 218 207 196 185 174 164 154 144 134 123 110 98 87 76 53 35 22 15 

t 15.9 14.7 13.2 11.4 9.6 7.9 6.8 6 5.4 5 5 5 5 5 5 5 5 5 5 5 

 VB1 = 10.14 Hz    VB2 = 30.2 Hz     VB3 = 55 Hz 

 HB1 = 17.6 Hz    HB2 = 52.5 Hz     HB3 = 95.6 Hz 

 

Table 4: Comparison of mass (kg) and natural frequencies (Hz) between baseline and optimum designs 

Design Mass VB1 VB2 VB3 HB1 HB2 HB3 

Baseline 122.55 2.80 17.55 49.14 4.86 30.5 85.35 

Optimum 122.55 10.14 30.20 55.00 17.60 52.5 95.60 

Change % 0.00 262.00 72.00 12.00 262.00 72.0 12.00 

 

  

  

  
 
Fig. 7: Mode shapes and natural frequencies for vertical and horizontal bending vibration of the baseline design 
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Fig. 8: Mode shapes and natural frequencies for vertical and horizontal bending vibration of the optimum design 
 
 Non-dimensional bending natural frequencies of 
such a spar are 3.62, 1.72 and 1.12 for first, second and 
third modes of vibration respectively. Mass of that spar 
is equal to that of the baseline beam. Actual dimensions 
and natural frequencies of the optimum spar are given 
in Table 3. It is obvious that a considerable increase in 
all frequencies had been achieved as compared to the 
original baseline design (Table 4). It can also be seen 
that good beam design for flapping dynamics should 
have smaller wall thickness in the outboard portion of 
the blade where the strength constraints are active. This 

completely differs from the traditional designs of 
keeping wall thickness constant along the beam. The 
optimization process recommended the segments 
located inboard to have high wall thickness and high 
fiber content. The spanwise variation in the height of 
each segment of the beam is always restricted by the 
taper envelope which is the major obstacle in design 
optimization. Considering now the mass distribution 
along the spar, that is the main factor in material 
grading concept. It is known that mass of each segment 
depends  on  length,  cross section dimensions and fiber 

1VB 

2VB 

3VB 3HB 

2HB 

1HB 



World Appl. Sci. J., 33 (3): 525-535, 2015 

534 

 
Table 5: Comparison of natural frequencies between analytical and FEM results in Hz 

 Baseline design   Optimum design 

 -------------------------------------------------------------------- ------------------------------------------------------------------- 

Mode Analytical FEM Diff. % Analytical FEM Diff. % 

VB1 2.80 2.97 5.7 10.14 9.64 5.0 

VB2 17.55 17.84 1.6 30.20 27.83 7.8 

VB3 49.14 46.70 5.0 55.00 54.00 1.8 

HB1 4.86 5.02 3.2 17.60 16.23 7.8 

HB2 30.50 30.00 1.6 52.50 46.82 10.0 

HB3 85.35 78.60 7.9 95.60 91.97 4.0 

 
content within that segment. Figure 6 presents the 
optimum spanwise mass distribution in case of twenty-
segment spar. As a general observation, the rate of 
reducing mass as going from root towards tip is 
recommended to be higher than that of the baseline 
design. 
 
Finite element validation: In order to validate the 
results obtained from the analytical model considered in 
this investigation, a comparison with finite element 
results was performed for the baseline and the optimum 
spar designs. The finite element analysis was conducted 
by using NX Nastran solver, with the baseline and the 
optimum designs modeled by using 2700 and 4860 
linear laminate plate 4-noded quad elements 
respectively. Figure 7 and 8 shows mode shapes with 
the associated natural frequencies for bending vibration 
of baseline and optimum designs, respectively. The first 
three natural frequencies of bending vibration obtained 
by both analytical and finite element methods are 
compared in Table 5 for both baseline and optimum 
designs. The agreement between the two methods of 
prediction is acceptable. 
 

CONCLUSIONS 
 
 An efficient mathematical optimization model for 
enhancing the dynamic performance of thin-walled 
composite blades with spanwise material grading was 
developed. The formulation of an optimum design 
providing high natural frequencies was investigated. 
Constraints were imposed on the design variables in 
order to avoid abnormal-shaped optimized 
configurations. An analytical model was implemented 
taking  into  consideration  all  the  design  variables 
such as cross-section dimensions and lamination 
parameters. The proposed model deals with 
dimensionless quantities in order to be applicable to 
thin-walled beams with arbitrary dimensions. Results 
indicated that the optimization process leads to 
significant increase of natural frequencies of the 
optimized spar from 12 to 262% when compared to the 

reference baseline design without mass change. Finite 
element model showed a good agreement with the 
analytical model developed in this study with a 
variation up to 10%. 
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